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Large liquid
argon TPCs are
central to the US
neutrino physics
program
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MicroBooNE Event Zero:
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MicroBooNE Event Zero:
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NOTE: TPC GETS INSTALLED
~1.66° TO RIG ~ 50°

. O RIGHT, ~.50
DOWN FROM CURRENT
POSITION.
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Expect verification with experimental
data soon!
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Real MicroBooNE PMT data

1000 1200
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Real MicroBooNE PMT data
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MicroBooNE system

CXKendziora 1.15.13

“DETAIL B

“DETAIL C
NOTE: TPC GETS INSTALLED
~1.66° TO RIGHT, ~.
DOWN FROM CURRENT
POSITION.
SECTION A-A




Ar Scintillation

%TPB emission

Platinum coated
photocathode to
keep electron
mobility

Wavelength shifting
plate (TPB)
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- WLS efficiency of pure TPB has been quantified — at 128nm, about
1.2 visible photons out for 1 UV photon in.
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TPB coating efficiency
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TPB time response

A 250 nm and above, TPB
response is prompt (1-2 ns)

Recent work shows that at 128
nm, TPB has a long time tail

Comparison with scintillation
profiles gives possible
interpretation:

Scintillating secondary electron
liberated from the molecule,
exciting TPB triplets

This also helps explain the 1.2
shifting efficiency

amplitude (arb. units)
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E. Segreto
Phys. Rev. C 91, 035503
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Decay time (ns) Abundance (%)
Instantaneous component 1-10 60 + 1
Intermediate component 49+ 1 30£1
Long component 3550 + 500 8+1
Spurious component 309 =+ 10 2+1




Environmental sensitivity of TPB

- We found that TPB is very
sensitive to UV light and
degrades in performance

- Also yellows in color with : : : ] :
exposure C ® Roforonce
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Journal of Instrumentation > Volume 7 > July 2012
C SChiuetal 2012 JINST7 P0O7007 doi:10.1088/1748-0221/7/07/P07007

Environmental effects on TPB wavelength-shifting coatings

C S Chiu, C Ignarra, L Bugel, H Chen, J M Conrad, B J P Jones, T Katori and | Moult




Scintillation grade

Photodegradation
Mechanism of TPB

) Standard grade NMR investigations ShOW
(decayed scint spontaneously evolved photo-
grade shows ETTT . " .
same peaks) initiating impurities in TPB

The impurity is present at low level
L in lower commercially available
: T grades of TPB
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r T T T T T T T T T T T T T T T
8.0 79 78 77 76 7.5 7.4 73 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5
1 (ppm)(B Jones TPB 99% in CD2CI2 ; 1H{13C} spedrum using Av500 ; Jul11-2011/4)

“M
1H selmigp.2 7.73ppm selectively excited
: M
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Monitoring decay with GCMS

Working with GCMS we
identified the degradation
mechanism — radical

B 15 Benzophenone Buildup with UV Exposure mediated photo-oxidation
c
3 to benzophenone
. Q@ O (> P
S ~~—> °
g © O ) Demonstrated delayed
M 05 9 . . .
£ degradation using radical
£ | | | | | | | | mediators confirms this
o 10 20 30 40 50 60 70 80 inte rp retation
Exposure (lamp hours)
-0.5
< e = Oxygen is required.
& . « = Submerged in LAr, should
£ ' be safe from decay.
§ 13 S x’l ——Relative plate performance
o xx More on this later...
@ 2 - - BP content (log %)
-2.5 -
Journal of Instrumentation > Volume 8 > January 2013

B J P Jones etal 2013 JINST 8 P01013 doi:10.1088/1748-0221/8/01/P01013

Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon
detectors

B J P Jones?, J K VanGemert®, J M Conrad® and A Pla-Dalmau®




Bo Vertical Slice Test Stand

Test bed for the MicroBooNE optical
system including:

Cryogenic photomultiplier tubes
Base electronics

Wavelength shifting plate

High voltage system + interlocks
Cables and splitters

Readout electronics

Cryostat feedthrough

Trace impurity monitors

Etc...

Also used for liquid argon R&D
work for MicroBooNE, DUNE, etc




Removing H,0O and O,

- Water removed by 4A molecular sieves

4A¢ Very large effective surface area
for molecules with d < 4A
o
® e waterd ~ 2.75 A
H,0

- Oxygen removed by activated copper granules

Oxygen trapped by oxidizing

the copper
.
o. Cu + %0, 2 CuO
2

- 10 ppt levels of water and oxygen impurity can be
achieved

Nucl.Instrum.Meth 605A 3 306-311



Effect of Nitrogen : 1. Quenching

Scintillation process

*
Competing Excimer
Dissociation Process @@ - / *

Rate dependent on the density of excimers and
density of impurity



Quenching due to Nitrogen

pulse height (A.U.)
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Much stronger effect on triplet state —
longer time for collisions to occur

Affects time constant as well as total
light yield and fast / slow ratio

Systematic study shows that nitrogen
should be kept < 2 ppm to prevent
significant quenching

2010 JINST 5 P06003
WATrP collaboration



Effect of Nitrogen: 2. Absorption

Scintillation process

Photon mw

absorption

Detector



A measurement of the absorption of liquid argon
scintillation light by dissolved nitrogen at the part-
per-million level

B J P Jones, CS Chiu, J M Conrad, C M Ignarra, T Katori and M Toups

Published 24 July 2013 ¢ © 2013 IOP Publishing Ltd and Sissa Medialab srl ¢ Journal of Instrumentation, .
Top View
Volume 8, July 2013
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Implications for LArTPC Detectors

50 ' ' v T T ' ' ' ' T v T ' ' T ' ' v v T
Argon Specification | Concentration of N, | Absorption Length
- Measured N, concentration of 37 ppb 1790 + 160 m
—~ 40 L clean argon for this study
E AirGas research (grade 6) argon [24] 1 ppm 66 + 6 m
N— MicroBooNE cryogenic specification 2 ppm 30£3m
= : Start of liquid recirculation phase of 8 ppm 82+0.7m
E) 30 | Liquid Argon Purity Demonstrator, Run 2 [25,26]
8 : AirGas industrial (grade 4) argon [24] 100 ppm 0.65 £+ 0.06 m
—
= : e |
o 20l - In large detectors, hit absorption limits
e T before quenching limits -
8 .
-2 ! - MicroBooNE argon procurement process ]
10 relied on this measurement -
—_— -
0 ! ! ! ! | ! 1 ! ! | ! ! ! 1 | ! ! ! ! | ! 1 1 !

$$5$9% N2 Concentration (ppm) $



L
What should drive the deSign? (my opinion...)



MicroBooNE Event Zero:

(half design field)




L
What should drive the design? (my opinion...)

-Maximize spatial resolution.



What should drive the deSign? (my opinion...)

Maximize spatial resolution.

Within the constraints:
- Fixed $$
- Keep within detector real-estate
- Don’t hurt the TPC system

By doing the following:
- More channels per $
- More light per channel

| am only going to highlight only the ideas that seem to achieve this.



Denver Whittington —
More channels per $ LIDINE2015 talk
Light Guides for Large-Area Photon Detection M)qu

> Large active-area UV-collecting light guides

> Acrylic or polystyrene imbued with wavelength-shifting compound
> Based on design pioneered by MIT
> Dip-coating w/ TPB in solvent (after studying many different methods)

&8
?5
69\\\ A P
~ N~ 430 nm shifted light (in bar)

> Embed PD paddles inside anode plane

assembly behind collection wires
» Large photosensitive area with
small photocathode area
» Low-voltage SiPM bias

> Easily scalable

- PMTs - SiPMs drives unit cost down
- Removes HV requirement
- But mandates additional collectors (eg lightguides)

111111111111117
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/ 1111111111117
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%
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D. Whittington - DUNE Photon Detection - LIDINE 2015 28 August 2015 3
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More channels per $:

Left Collection view
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More channels per $:

Left Collection view
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This is an event = 'C % Acta Phys.Polon.B41:103-125,2010
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Readout PMT system
through crosstalk alone?

arxiv:1507.01997 Z. Moss et al

- Proposal to remove PMT
readout electronics
system altogether and
purely read out via
crosstalk

- Possibly boost crosstalk
with an extra antenna to
increase capacitance
between systems

- No readout electronics
means more $ for
sensitive elements

Capacitive plate
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Denver Whittington —

Back to light guides: LIDINE2015 talk

Light Guides for Large-Area Photon Detection M)qu

> Large active-area UV-collecting light guides

> Acrylic or polystyrene imbued with wavelength-shifting compound
> Based on design pioneered by MIT
> Dip-coating w/ TPB in solvent (after studying many different methods)

&8
?5
69\\\ A P
~ N~ 430 nm shifted light (in bar)

> Embed PD paddles inside anode plane

assembly behind collection wires
» Large photosensitive area with
small photocathode area
» Low-voltage SiPM bias

> Easily scalable

- PMTs - SiPMs drives unit cost down
- Mandates additional collectors (eg lightguides)
- Collector requires optimization
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D. Whittington - DUNE Photon Detection - LIDINE 2015 28 August 2015 3




Improved TPB Coating

: . Jarrett Moon — LIDINE2015 talk
* Increase TPB/acrylic ratio

059gTPB - 0.1gTPB

50 mL toluene - 50 mL toluene
10 mL ethanol - 12 mL ethanol
1 g acrylic - 0.1 g acrylic

« Initial test done in air, and showed drastic improvement

1200
1100

But for such a seemingly
drastic improvement, the
proof is in the pudding
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Competing

light guide designs
Denver Whittington — LIDINE2015 talk

Dip-Coated Acrylic (New MIT Recipe)

0.04 E—
o — High-Front

0.035—
0.03 f— — Low-Front

0.025

0.02

0.015[—
0.015—
0,005
ok . N I el .
o 50 100 150 200 250 300
Signal [PE]
WLS Fibers + TPB Radiator WLS Fibers in TPB-Coated Panel TPB Dip-Coated Acrylic
0.08
01— E 0.16]—
L . 0.07F . L .
- — High-Front F — High-Front 014 — High-Front
008/~ 0.0~ C
L — Low-Front E — Low-Front 012 — Low-Front
008 0'055 0.1
L 004 0.08
004 003 0.06
0.02 0.04:—
0.02 E
0.01F 0.02F
% 50 00 150 R a— - T -G 250 300 R 150 200 S 300
Signal [PE] Signal [PE] Signal [PE]



S
Improvement by chemical stabilization

Degradation of Plates with Different 4-Tert Butylcatechol
Improved initial Concentrations
erformance and g .
p ‘e . S 180 —* : 4
stabilization can be 2 e
: : . < *® o 2 ¢ Unexposed
< 8
achl_eved with radical g - ; - * 20 mis
medlatorS g 1200 -—e > * © 50 mins
5 0 ° ° ¢ ~ © 110 mins
= 1000 < .
9 w0 é s x ¢ 290 mins
® ¢ 375 mins
Interpretation: Partial 18 : S . v ¢ 440 mins
TPB->BP decay in solution | . ’ :
during coating preparation . . ’
(; 0.‘2 0.'4 0.'6 0.'8 i 112 114 1j6 1i8 é
BC / TPB Mass Ratio

More exploration of
stabilizers could y|e|d Journal of Instrumentation > Volume 8 >January 2013

. . ! 0i:10. 74
brlghter TPB-PS Coatmgs B JP Jones etal 2013 JINST 8 P01013 doi:10.1088/1748-0221/8/01/P01013

Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon
detectors

B J P Jones?, J K VanGemert®, J M Conrad® and A Pla-Dalmau®
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L Arl AT-Style foils Will Foreman — LIDINE 2015 talk
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Reflector-based solution
(LArIAT)

TPB

reflector

Field cage
wall

= A
Test-mount of mock foil masks.



Advantages of foils

- Detector is small, so cosmic
background not problematic.

- LArIAT collection all light at
one spot — foils homogenize
detector response (good!)

- Detector goal is to study
charge and light emission —
so get lots of it (good!)

- On the flipside, very little
spatial information in the
reflected light.

X [m]

X [m]

TPB-coated PMT scenario (seeing “direct” light)

0.4 0.4
Z[m]
Bare PMTs, TPB foils on walls (seeing “reflected” light)

04
Z[m]

Will Foreman — LIDINE 2015 talk
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Ettore Segretto — LIDINE 2015 talk
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B
Xe Doping

Addition of xenon can produce excitation transfer which moves light to
earlier times.

- Common myth : “TPB is brighter at LXe wavelengths” — not true!

- But bringing late light to earlier times after the pulse makes it more
easily collectable, and more useful.

- ~100 ppm required = multiple tons for DUNE. Not a cheap proposal.

18 . , S R Pure Ar
- | I Gehman et al. 1 .
1.6 [~ | LAr | Lxe Nucl.Instrum. ' ----neutron
N | Scintillation | Scintillation Meth. A654 » gamma
B 14 — | I (2011) 116-121 0.1
8 L F |
o .
T I 0.01 -
EEJ _ [
g 1 :
= F : Wahl et al.
08 [ . JINST 9 (2014)
- P06013
0.6 '

- - e — — e e e 0.1 3
120 140 160 180 200 220 240 260
Wavelength [nm]

0.01



Summary

Liquid argon TPCs are an important part of the US
neutrino physics program

Light collection systems are important for background
rejection, drift-position measurement

Significant R&D was required to realize present-
generation experiments

R&D for next-generation experiments should focus (IMO)
on spatial specificity for geometrical tagging

This can be achieved with more channels per $ and more
light per channel

There are old ideas, new ideas, and ideas yet-to-be-had
that can make this happen.



